Home
Dataset
Results
Classification
Localization
Upload
TSWC2017
Information
Contact Name: Rajkumar Theagarajan
Email: rthea001@ucr.edu
Organization: University of California, Riverside
Method's Name: (C) Ensemble of Deep Networks: Network A,B and C
Reference: Rajkumar Theagarajan, et al., "EDeN: Ensemble of Deep Networks for Vehicle Classification", Traffic Surveillance Workshop and Challenge, CVPR 2017.
Project Website:
Evaluation Metrics
Precision of each category :
$$ Pre_i = \frac{TP_i}{TP_i + FP_i}$$
Articulated Truck
Bicycle
Bus
Car
Motorcycle
Non-motorized Vehicle
Pedestrian
Pickup Truck
Single Unit Truck
Work Van
Background
0.9368
0.9361
0.9910
0.9889
0.9587
0.8661
0.9650
0.8997
0.8868
0.9585
0.9951
Recall of each category:
$$ Rec_i = \frac{TP_i}{TP_i + FN_i}$$
Articulated Truck
Bicycle
Bus
Car
Motorcycle
Non-motorized Vehicle
Pedestrian
Pickup Truck
Single Unit Truck
Work Van
Background
0.9451
0.8984
0.9794
0.9790
0.9374
0.7237
0.9348
0.9624
0.8445
0.9059
0.9980
Accuracy: 0.9780
$$ Acc = \frac{TP}{Number of Testing Images}$$
Mean Recall: 0.9190
$$ {mRec} = {\rm mean}({Rec_i})$$
Mean Precision: 0.9439
$$ {mPre} = {\rm mean}({Pre_i})$$
Cohen Kappa Score: 0.9658
Confusion Matrix (%):
Predicted
Articulated Truck
Bicycle
Bus
Car
Motorcycle
Non-motorized Vehicle
Pedestrian
Pickup Truck
Single Unit Truck
Work Van
Background
True
Articulated Truck
94.51
0.00
0.15
0.19
0.00
1.04
0.00
0.08
3.52
0.15
0.35
Bicycle
0.00
89.84
0.18
0.18
1.40
0.00
7.18
0.00
0.00
0.00
1.23
Bus
0.31
0.00
97.94
0.89
0.00
0.08
0.00
0.31
0.08
0.16
0.23
Car
0.01
0.00
0.01
97.90
0.00
0.00
0.00
1.93
0.00
0.09
0.06
Motorcycle
0.00
1.41
0.00
1.82
93.74
0.00
0.40
0.00
0.00
0.00
2.63
Non-motorized Vehicle
6.39
0.23
0.46
1.37
0.23
72.37
0.46
3.88
5.25
1.83
7.53
Pedestrian
0.00
1.73
0.00
0.13
0.45
0.06
93.48
0.06
0.06
0.00
4.03
Pickup Truck
0.02
0.00
0.01
3.56
0.00
0.02
0.00
96.24
0.09
0.04
0.02
Single Unit Truck
8.83
0.00
0.16
0.70
0.00
0.23
0.00
3.75
84.45
1.17
0.70
Work Van
0.08
0.00
0.21
6.77
0.00
0.12
0.00
1.24
0.33
90.59
0.66
Background
0.01
0.00
0.01
0.12
0.00
0.02
0.02
0.01
0.00
0.01
99.80