Home
Dataset
Results
Classification
Localization
Upload
TSWC2017
Information
Contact Name: Heechul Jung
Email: heechul@dgist.ac.kr
Organization: DGIST
Method's Name: Joint fine-tuning with DropCNN
Reference: H.Jung, MK Choi, J.Jung, JH Lee, S.Kwon, WY Jung "ResNet-based Vehicle Classification and Localization in Traffic Surveillance Systems", Traffic Surveillance Workshop and Challenge, CVPR 2017.
Project Website:
Evaluation Metrics
Precision of each category :
$$ Pre_i = \frac{TP_i}{TP_i + FP_i}$$
Articulated Truck
Bicycle
Bus
Car
Motorcycle
Non-motorized Vehicle
Pedestrian
Pickup Truck
Single Unit Truck
Work Van
Background
0.9213
0.9376
0.9902
0.9871
0.9869
0.9582
0.9710
0.9231
0.8395
0.9733
0.9945
Recall of each category:
$$ Rec_i = \frac{TP_i}{TP_i + FN_i}$$
Articulated Truck
Bicycle
Bus
Car
Motorcycle
Non-motorized Vehicle
Pedestrian
Pickup Truck
Single Unit Truck
Work Van
Background
0.9324
0.8949
0.9779
0.9853
0.9111
0.5228
0.9406
0.9539
0.8336
0.9166
0.9984
Accuracy: 0.9795
$$ Acc = \frac{TP}{Number of Testing Images}$$
Mean Recall: 0.8970
$$ {mRec} = {\rm mean}({Rec_i})$$
Mean Precision: 0.9530
$$ {mPre} = {\rm mean}({Pre_i})$$
Cohen Kappa Score: 0.9681
Confusion Matrix (%):
Predicted
Articulated Truck
Bicycle
Bus
Car
Motorcycle
Non-motorized Vehicle
Pedestrian
Pickup Truck
Single Unit Truck
Work Van
Background
True
Articulated Truck
93.24
0.00
0.35
0.93
0.00
0.23
0.00
0.23
4.33
0.15
0.54
Bicycle
0.18
89.49
0.18
2.45
0.70
0.00
6.48
0.00
0.00
0.00
0.53
Bus
0.23
0.00
97.79
1.47
0.00
0.00
0.00
0.35
0.08
0.08
0.00
Car
0.00
0.00
0.00
98.53
0.00
0.00
0.00
1.42
0.00
0.04
0.00
Motorcycle
0.00
1.82
0.00
2.22
91.11
0.00
0.40
0.00
0.00
0.00
4.44
Non-motorized Vehicle
10.73
0.23
0.23
0.91
0.00
52.28
0.68
3.65
13.01
2.05
16.21
Pedestrian
0.00
1.47
0.00
0.26
0.06
0.00
94.06
0.00
0.00
0.00
4.15
Pickup Truck
0.00
0.00
0.02
4.50
0.00
0.00
0.00
95.39
0.09
0.01
0.00
Single Unit Truck
10.31
0.00
0.16
0.47
0.00
0.16
0.00
2.58
83.36
1.09
1.88
Work Van
0.08
0.04
0.08
5.62
0.00
0.04
0.04
0.78
0.78
91.66
0.87
Background
0.04
0.00
0.02
0.07
0.00
0.00
0.00
0.01
0.01
0.02
99.84